Bồi dưỡng Học sinh giỏi môn Toán Lớp 6 - Mai Hương

Bồi dưỡng Học sinh giỏi môn Toán Lớp 6 - Mai Hương

Bài toán1. Viết các tập hợp sau rồi tìm số phần tử của tập hợp đó.

a) Tập hợp A các số tự nhiên x mà 8:x =2.

b) Tập hợp B các số tự nhiên x mà x+3<>

c) Tập hợp C các số tự nhiên x mà x-2=x+2.

d)Tập hợp D các số tự nhiên mà x+0=x

 Bài toán 2. Cho tập hợp A = { a,b,c,d}

 a) Viết các tập hợp con của A có một phần tử.

 b) Viết các tập hợp con của A có hai phần tử.

 c) Có bao nhiêu tập hợp con của A có ba phần tử? có bốn phần tử?

 d) Tập hợp A có bao nhiêu tập hợp con?

Bài toán 3. Xét xem tập hợp A có là tập hợp con của tập hợp B không trong các trường hợp sau.

 a, A={1;3;5}, B = { 1;3;7} b, A= {x,y}, B = {x,y,z}

 c, A là tập hợp các số tự nhiên có tận cùng bằng 0, B là tập hợp các số tự nhiên chẵn.

 

doc 24 trang huongdt93 2320
Bạn đang xem 20 trang mẫu của tài liệu "Bồi dưỡng Học sinh giỏi môn Toán Lớp 6 - Mai Hương", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CHUYÊN ĐỀ 1: TẬP HỢP, TẬP HỢP CON- ÁP DỤNG.
Bài toán1. Viết các tập hợp sau rồi tìm số phần tử của tập hợp đó.
a) Tập hợp A các số tự nhiên x mà 8:x =2.
b) Tập hợp B các số tự nhiên x mà x+3<5.
c) Tập hợp C các số tự nhiên x mà x-2=x+2.
d)Tập hợp D các số tự nhiên mà x+0=x
	Bài toán 2. Cho tập hợp A = { a,b,c,d} 
	a) Viết các tập hợp con của A có một phần tử.
	b) Viết các tập hợp con của A có hai phần tử.
	c) Có bao nhiêu tập hợp con của A có ba phần tử? có bốn phần tử?
	d) Tập hợp A có bao nhiêu tập hợp con?
Bài toán 3. Xét xem tập hợp A có là tập hợp con của tập hợp B không trong các trường hợp sau.
	 a, A={1;3;5}, B = { 1;3;7} b, A= {x,y}, B = {x,y,z}
 c, A là tập hợp các số tự nhiên có tận cùng bằng 0, B là tập hợp các số tự nhiên chẵn.
Bài toán 4. Ta gọi A là tập con thực sự của B nếu ;. Hãy viết các tập con thực sự của tập hợp B = {1;2;3}.
	Bài toán 5. Cho tập hợp A = {1;2;3;4} và B = {3;4;5}. Hãy viết các tập hợp vừa là tập con của A, vừa là tập con của B.
	Bài toán 6. Chứng minh rằng nếu thì 
	Bài toán 7. Có kết luận gì về hai tập hợp A,B nếu biết.
	 a, thì b, thì , thì .
Bài toán 8. Cho H là tập hợp ba số lẽ đàu tiên, K là tập hợp 6 số tự nhiên đầu tiên.
	 a, Viết các phần tử thuộc K mà không thuộc H. b,CMR 
	 c, Tập hợp M với .
 	 - Hỏi M có ít nhất bao nhiêu phần tử? nhiều nhất bao nhiêu phần tử?
 	 - Có bao nhiêu tập hợp M có 4 phần tử thỏa mãn điều kiện trên?
	Bài toán 9. Cho . Hãy xác định tập hợp M = {a-b}.
	Bài toán 10. Cho tập hợp A = {14;30}. Điền các ký hiệu vào ô trống.
	a, 14 A ;b, {14} A; c, {14;30} A.
.
CHUYÊN ĐỀ 2. SỐ TỰ NHIÊN- CÁC PHÉP TOÁN TRÊN TẬP HỢP SỐ TỰ NHIÊN
Bài toán 1. Viết tập hợp các số tự nhiên có 2 chữ số trong đó mỗi số:
a, Chữ số hàng đơn vị gấp 2 lần chữ số hàng chục.
	b, Chữ số hàng đơn vị nhỏ hơn chữ số hàng chục là 4.
	c, Chữ số hàng đơn vị lớn hơn chữ số hàng chục.
Bài toán 2. Cho 3 chữ số a,b,c. Gọi A là tập hợp các số tự nhiên gồm 3 chữ số nói trên.
	a, Viết tập hợp A. b, Tính tổng các phần tử của tập hợp A.
Bài toán 3. Cho một số có 3 chữ số là (a,b,c khác nhau và khác 0). Nếu đỗi chỗ các chữ số cho nhau ta được một số mới. Hỏi có tất cả bao nhiêu số có 3 chữ số như vậy? (kể cả số ban đàu).
Bài toán 4. Cho 4 chữ số a,b,c và 0 (a,b,c khác nhau và khác 0).Với cùng cả 4 số này có thể lập được bao nhiêu số có 4 chữ số?
Bài toán 5. Cho 5 chữ số khác nhau. Với cùng cả 5 chữ số này có thể lập được bao nhiêu số có 5 chữ số? 
Bài toán 6. Quyển sách giáo khoa Toán 6 có tất cả 132 trang.Hai trang đầu không đánh số. Hỏi phải dùng tất cả bao nhiêu chữ số để đánh số các trang của quyển sách này?
Bài toán 7. Tìm hai số biết tổng là 176 ; mỗi số đều có hai chữ số khác nhau và số này là số kia viết theo thứ tự ngược lại. 
Bài toán 8. Cho 4 chữ số khác nhau và khác 0.
a) Chứng tỏ rằng có thể lập được 4! số có 4 chữ số khác nhau.
b) Có thể lập được bao nhiêu số có hai chữ số khác nhau trong 4 chữ số đó. 
Bài toán 9. Tính các tổng sau.
a) 1 + 2+ 3+ 4 +....+ n b) 2+4+6+8+...+2.n
c) 1+3+5+7+...+(2.n +1) d) 1+4+7+10+..+2005
e) 2+5+8+...+2006	f) 1+5+9+..+2001
Bài toán 10 Tính nhanh tổng sau. A = 1 +2 +4 +8 +16 +....8192
Bài toán 11 a) Tính tổng các số lẽ có hai chữ số 
 b) Tính tổng các số chẵn có hai chữ số.
Bài toán 12. a) Tổng 1+ 2+ 3+ 4 +...+ n có bao nhiêu số hạng để kết quả bằng 190 
	b) Có hay không số tự nhiên n sao cho 1 + 2+ 3+ 4 +....+ n = 2004
Bài toán 13. Tính giá trị của biểu thức.
a) A = (100 - 1).(100 - 2).(100 - 3)...(100 - n) với n N * và tích trên có đúng 100 thừa số.
b) B = 13a + 19b + 4a - 2b vớ a + b = 100.
Bài toán 14.Tìm các chữ số a, b, c, d biết 
Bài toán 15. Chứng tỏ rằng hiệu sau có thể viết được thành một tích của hai thừa số bằng nhau: 11111111 - 2222.
Bài toán 16. Hai số tự nhiên a và b chia cho m có cùng số dư, a b. Chứng tỏ rằng 
 a - b : m
Bài toán 17. Chia 129 cho một số ta được số dư là 10. Chia 61 cho số đó ta được số dư là 10. Tim số chia.
Bài toán 18. Cho S = 7 + 10 + 13 + ... + 97 + 100
a) Tổng trên có bao nhiêu số hạng?
b) Tim số hạng thứ 22
c) Tính S.
Bai toán 19. Chứng minh rằng mỗi số sau có thể viết được thành một tích của hai số tự nhiên liên tiếp:
a) 111222 ; b) 444222
Bài toán 20 . Tìm số chia và số bị chia, biết rằng: Thương bằng 6, số dư bằng 49, tổng của số bị chia,số chia và dư bằng 595.
Bài toán 21. Tính bằng cách hợp lý.
a) b) 
c) 
Bài toán 22. Tìm kết quả của phép nhân. 
a) b) 
Bài toán 23.Tìm giá trị nhỏ nhất của b. thức A = 2009 - 1005:(999 - x)với x 
CHUYÊN ĐỀ 3. LUỸ THỪA VỚI SỐ MŨ TRÊN TỰ NHIÊN
A. Kiến thức cơ bản: + a.a...a ( n thừa số a, no )
+ Quy ước: a1 = a, a0 = 1.
+ am.an = am+n (m, n N*); am:an =am-n (m, n N*, mn, a 0); 
- Nâng cao: + Luỹ thừa của một tích: (a.b)n = am.bn 
+ Lũy Thừa của một thương: (a:b)n=an:bn
+ Luỹ thừa của luỹ thừa: (am)n = am.n
+ Luỹ thừa tầng: = 
( trong một luỹ thừa tầng ta thực hiện phép luỹ thừa từ trên xuống dưới ).
+ Số chính phương là bình phương của một số tự nhiên.
- So sánh hai luỹ thừa: + Nếu hai luỹ thừa có cùng cơ số ( lớn hơn 1 ) thì luỹ thừa nào có số mũ lơn hơn sẽ lớn hơn. 
 Nếu m > n Thì am > an (a > 1)
+ Nếu hai luỹ thừa có cùng số mũ lớn hơn 0 thì luỹ thừa nào có cơ số lơn hơn sẽ lớn hơn.
 Nếu a > b Thì am > bm (m > o)
B. Bài tâp. 
Bài toán 1. Viết các tích sau hoặc thương sau dưới dạng luỹ thừa của một số.
a) 25 . 84 ; b) 256.1253 ; c) 6255:257	
Bài toán 2: Viết mỗi tích , thương sau dưới dạng một luỹ thừa:
a) 410.230 ; b) ; c) ; d) ; 
e) ; ; ; 
f) ; ; ; 
Bài toán 3. Tính giá trị các biểu thức.
a) ; c) ; d) 
Bài toán 4: Viết các số sau dưới dạng tổng các luỹ thừa của 10.
213; 421; 2009; ; 
Bài toán 5 So sánh các số sau, số nào lớn hơn?
a) 2711 và 818 b) 6255 và 1257 c) 523 và 6. 522 d) 7. 213 và 216
Bài toán 6: Tính giá trị các biểu thức sau:
a) a3.a9 b) (a5)7 c) (a6)4.a12 d) 56 :53 + 33 .32 e) 4.52 - 2.32
Bài toán 7. Tìm n N * biết.
a) b) c) d) ; 
e) g) h) 
Bài toán 8 Tìm x N biết.
a) ( x - 1 )3 = 125 ; b) 2x+2 - 2x = 96; 
 c) (2x +1)3 = 343 ; d) 720 : [ 41 - (2x - 5)] = 23.5.
e) 16x <1284 
Bài toán 9 Tính các tổng sau bằng cách hợp lý.
A = 2 + 22 + 23 + 24 +...+2100
B = 1 + 3 + +32 +32 +...+ 32009
C = 1 + 5 + 52 + 53 +...+ 51998
D = 4 + 42 + 43 +...+ 4n
Bài toán 10: Cho A = 1 + 2 + 22 + 23 + 24 +...+2200. Hãy viết A + 1 dưới dạng một luỹ thừa.
Bài toán 11. Cho B = 3 + +32 +33 +...+ 32005. CMR 2B + 3 là luỹ thừa của 3.
Bài toán 9. Chứng minh rằng:	
a) 55-54+53 7 b) c) 
d) e) f) 
Bài toán 12: a) Viết các tổng sau thành một tích: 2+22; 2+22+23 ; 2+22+23 +24
b) Chứng minh rằng: A = 2 + 22 + 23 + 24 +...+22004 chia hết cho 3;7 và 15
Bài toán 13: a) Viết tổng sau thành một tích 34 +325 +36+ 37
b) Chứng minh rằng: + B = 1 + 3 + +32 +32 +...+ 399 40
+ A = 2 + 22 + 23 + 24 +...+2100 31
+ C = 165 + 215 33 + D = 53! - 51! 29
Bài toán 14: Thực hiện các phép tính sau một cách hợp lý: 
a) (217+172).(915 - 159)(42- 24) b) (71997- 71995):(71994.7)
c) d) 
Các bài toán về chữ số tận cùng: 
* Tóm tắt lý thuyết: 
- Tìm chữ số tận cùng của một tích: +Tích của các số lẽ là một số lẽ
 + Tích của một số chẵn với một số bất kỳ số tự nhiên nào cũng là một số chẵn.
- Tìm chữ số tận cùng của một luỹ thừa.
+ Các số tự nhiên có tận cùng bằng 0,1,5,6 khi nâng lên luỹ thừa bất kì (khác 0) vẫn giữ nguyên các chữ số tận cùng của nó.
+ Các số tự nhiên tận cùng bằng những chữ 2,4,8 nâng lê luỹ thừa 4n (n0) đều có tận cùng bằng 6.
...24n = ...6 ; ...44n = ...6 ; ...84n = ...6
+ Các số tự nhiên tận cùng bằng những chữ 3,7,9 nâng lê luỹ thừa 4n (n0) đều có tận cùng bằng 1.
...34n = ...1 ; ...74n = ...1 ;...94n = ...1
- Một số chính phương thì không có tận cùng bằng 2,3,7,8.
* Bài tập áp dụng: 
Bài toán 1: Tìm chữ số tận cùng của các số sau.
Bài toán 2: Chứng minh rằng các tổng và hiệu sau chia hết cho 10.
481n + 19991999 ; 162001 - 82000 ; 192005 + 112004 ; 175 + 244 - 1321
Bài toán 3: Tìm chữ số tận cùng của tổng: 5 + 52 + 53 +...+ 596
Bài toán 4: Chứng minh rằng A = là một số tự nhiên.
Bài toán 5: Cho S = 1 + 3 +32 +33 +...+ 330 . Tìm chữ số tận cùng của S. CMR: S không là số chính phương.
Bài toán 6: Cho A = 2 + 22 + 23 + 24 +...+2100 
a) Chứng minh A 3
b) Chứng minh A 15 ; c) Tìm chữ số tận cùng của A.
Bài toán 7. Chú ý: + + 
+ Các số 320; 815 ; 74 ; 512; 992 có tận cùng bằng 01.
+ Các số 220; 65; 184;242; 684;742 có tận cùng bằng 76.
+ 26n (n >1) có tận cùng bằng 76.
áp dụng: Tìm hai chữ số tận cùng của các số sau.
 2100; 71991; 5151; ; 6666; 14101; 22003.
Bài toán 8. Tìm chữ số tận cùng của hiệu 71998 - 41998
Bài toán 9. Các tổng sau có là số chính phương không?
a) 108 + 8 ; b) 100! + 7 ; c) 10100 + 1050 + 1.
Bài toán 10. Chứng minh rằng
a) 20022004 - 10021000 10 b) 1999 2001 + 2012005 10; 
Bài toán 11. Chứng minh rằng: a) 0,3 . ( 20032003 - 19971997) là một số từ nhiên
b) 
CHUYÊN ĐỀ 4: CHIA HẾT TRONG TẬP SỐ TỰ NHIÊN 
I. Kiến thức bổ sung: 
1. a m ; b m k1a + k2b m
2. a m ; b m ; a + b + c m c m
II. Bài tập:
* Các phương pháp chứng minh chia hết. 
PP 1: Để chứng minh A b (b ). Ta biểu diễn A = b. k trong đó k N
PP 2. Sử dụng hệ quả tính chất chia hết của một tổng. 
 Nếu abm và a m thì b m.
PP 3. Để chứng minh một biểu thức chứa chữ (giã sử chứa n) chia hết cho b(b khác 0) ta có thể xét mọi trường hợp về số dư khi chia n cho b. 
PP 4. Để chứng minh A b. Ta biểu diễn b dưới dạng b = m.n. Khi đó.
+ Nếu (m,n) = 1 thì tìm cách chứng minh Am và A n suy ra Am.n hay A b.
+ Nếu (m,n) 1 ta biểu diễn A = a1.a2 rồi tìm cách chứng minh a1 m; a2 n thì tích a1.a2 m.n suy ra Ab.
PP 5. Dùng các dấu hiệu chia hết.
PP 6. Để chứng minh A b ta biểu diễn và chứng minh các 
Bài toán 1. Chứng minh rằng với mọi n N thì 60n +45 chia hết cho 15 nhưng không chia hết cho 30.
Bài toán 2. Cho a,b N. Hỏi số ab(a + b) có tận cùng bằng 9 không?
Bài toán 3. Cho n N. CMR 5n – 1 4 
Bài toán 4: Chứng minh rằng: a) b) với a>b.
Bài toán 5: Chứng minh rằng: 
a) A =1 + 2 + 22 + 23 + 24 +...+239 là bội của 15 T = 1257 -259 là bội của 124
c) M = d) P = với a,n N
Bài toán 6: CMR tổng của 3 số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp chia hết cho 5.
Bài toán 7: CMR: + Tổng của 3 số chẵn liên tiếp thì chia hết cho 6
 + Tổng 3 số lẽ liên tiếp không chia hết cho 6.
 + Tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng 5 số lẽ liên tiếp thì chia 10 dư 5
Bài toán 8: Cho a,b N và a - b 7 . CMR 4a +3b 7.
Bài toán 9: Tìm n N để.
a) n + 6 n ; 4n + 5 n ; 38 - 3n n
b) n + 5 n + 1 ; 3n + 4 n - 1 ; 2n + 1 16 - 3n
Bài toán 10. Chứng minh rằng: (5n)100 125 
Bài toán 11. Cho A = 2 + 22 + 23 +... + 22004 . 
CMR A chia hết cho 7;15;3
Bài toán 12. Cho S = 3 +32 +33 +...+ 31998 . CMR 
 a) S 12 ; b) S 39
Bài toán 13. Cho B = 3 +32 +33 +...+ 31000; CMR B 120
Bài toán 14. Chứng minh rằng: 
a) 3636 - 91045 ; b) 810 - 89 - 88 55 ; c) 55 - 54 + 53 7
d) e) 
g) h) i) 
Bài toán 15. Tìm n N để :
a) 3n + 2 n - 1 b) n2 + 2n + 7 n + 2 c) n2 + 1 n - 1 
d) n + 8 n + 3 e) n + 6 n - 1 	g) 4n - 5 2n - 1
Bài toán 16. CMR: 
a) Tích của hai số tự nhiên liên tiếp chia hết cho 2.
b) Tích của 3 số tự nhiên liên tiếp chia hết cho 6.
c) Tích của 4 số tự nhiên liên tiếp chia hết cho 24.
d) Tích của 5 số tự nhiên liên tiếp chia hết cho 120.
(Chú ý: Bài toán trên được sử dụng trong CM chia hết, không cần CM lại)
Bài toán 17. cho 4 số tự nhiên liên tiếp không chia hết cho 5, khi chia cho 5 được những số dư khác nhau. CMR tổng của chúng chia hết cho 5. 
Bài toán 18. Cho số không chia hết cho 3. Phải viết số này liên tiếp nhau ít nhất mấy lần để dược một số chia hết cho 3.
Bài toán 19: Cho n N, Cmr n2 + n + 1 không chia hết cho 4 và không chia hết cho 5.
Bài toán 20. Tìm số tự nhiên có hai chữ số, biết rằng số đó chia hết cho tích các chữ số của nó.
Bài toán 21. Cmr a) thì 
	 b) thì 
Bài toán 22. Hai số tự nhiên a và 2.a đều có tổng các chữ số bằng k. Chứng minh rằng a3
Bài toán 23. CMR: m + 4n 1310m + n13.
CHUYÊN ĐỀ: SỐ NGUYÊN TỐ – HỢP SỐ
Kiến thức bổ sung: 
+ Để kết luận số a là số nguyên tố (a > 1), chỉ cần chứng tốn không chia hết cho mọi số nguyên tố mà bình phương không vượt quá a.
+ Để chứng tỏ một số tự nhiên a > 1 là hợp số , chỉ cần chỉ ra một ước khác 1 và a.
+ Cách xác định số lượng các ước của một số: 
Nếu số M phân tích ra thừa số nguyên tố được M = ax . by cz thì số lượng các ước của M là ( x + 1)( y + 1) ( z + 1).
+ Khi phân tích ra thừa số nguyên tố , số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn. Từ đó suy ra.
Số chính phương chia hết cho 2 thì phải chia hết cho 22.
Số chính phương chia hết cho 23 thì phải chia hết cho 24.
Số chính phương chia hết cho 3 thì phải chia hết cho 32.
Số chính phương chia hết cho 33 thì phải chia hết cho 24.
Số chính phương chia hết cho 5 thì phải chia hết cho 52.
+ Tính chất chia hết liên quan đến số nguyên tố:
Nếu tích a.b chia hết cho số nguyên tố p thì hoặc ap hoặc bp. 
Đặc biệt nếu an p thì ap
+ Ước nhỏ nhất khác 1 của một hợp số là một số nguyên tố và bình phương lên không vượt quá nó.
+ Mọi số nguyên tố lớn hơn 2 đều có dạng: 
+ Mọi số nguyên tố lớn hơn 3 đều có dạng: 
+ Hai số nguyên tố sinh đôi là hai số nguyên tố hơn kém nhau 2 đơn vị
+ Một số bằng tổng các ước của nó (Không kể chính nó) gọi là ‘Số hoàn chỉnh’.
 Ví dụ: 6 = 1 + 2 + 3 nên 6 là một số hoàn chỉnh
Bài tập.
Bài 1. Tìm hai số nguyên tố biết tổng của chúng bằng 601.
Bài 2. Tổng của 3 số nguyên tố bằng 1012.Tìm số nhỏ nhất trong 3 số đó.
Bài 3. Cho A = 5 + 52 + 53 +...+ 5100
Số A là số nguyên tố hay hợp số?
Số A có phải là số chính phương không?
Bài 4. Số 54 có bao nhiêu ước? Viết tất cả các ước của nó.
Cách liệt kê: 54 = 2.33
1 3 32 33
1 2 
1 3 32 33 hay 1 3 9 27
2 2.3 2. 32 2.33 	2 6 18 54
Bài 5. Tổng (hiệu) sau là số nguyên tố hay hợp số?
1.3.5.7 13 + 20
147.247.347 – 13
Bài6.Tìm số nguyên tố p sao cho
4p + 11 là số nguyên tố nhỏ hơn 30.
P + 2; p + 4 đều là số nguyên tố.
P + 10; p +14 đều là số nguyên tố.
Bài 7. Cho n N*; Chứng minh rằng: là hợp số.
Bài 8. + Cho n là một số không chia hết cho 3. CMR n2 chia 3 dư 1.
 + Cho p là số nguyên tố lớn hơn 3. Hỏi p2 + 2003 là số nguyên tố hay hợp số?
Bài 9. Cho n N, n> 2 và n không chia hết cho 3. CMR n2 – 1 và n2 + 1 không thể đồng thời là số nguyên tố.
Bài 10. Cho p là số nguyên tố và một trong hai số 8p + 1 và 8p – 1 là số nguyên tố, số còn lại là số nguyên tố hay hợp số?
Bài 11. Cho p là số nguyên tố lớn hơn 3. CMR (p - 1)(p + 1) chia hết cho 24.
Bài 12. Cho p và 2p + 1 là hai số nguyên tố (p > 3). CMR: 4p + 1 là hợp số. 
CHUYÊN ĐỀ: ƯỚC CHUNG – ƯCLN – BỘI CHUNG – BCNH
Kiến thức bổ sung.
ƯC - ƯCLN
+ Nếu a b thì (a,b) = b.
+ a và b nguyên tố cùng nhau (a,b) = 1
+ Muốn tìm ước chung của các số đã cho ta tìm các ước của ƯCLN của các số đó.
+ Cho ba số a,b,c nguyên tố với nhau từng đôi một nếu (a,b) = 1; (b,c) = 1; (a,c) = 1
Tính chất chhia hết liên quan đến ƯCLN
Cho (a,b) = d . Nếu chia a và b cho p thì thương của chúng là những số nguyên tố cùng nhau.
Cho a.b mà (a,m) = 1 thì b m
2 . BC – BCNN
+ Nếu số lớn nhất trong một nhóm chia hết cho các số còn lại thì số này là BCNN của nhóm đó.
+ Nếu các số nguyên tố với nhau từng đôi một thì BCNN của chúng là tích của các số đó.
+ Muốn tìm BC của các số đã cho, ta tìm bội của BCNN của các số đó.
Nâng cao. 
Tích của hai số bằng tích của ƯCLN và BCNN của chúng.
 a.b = ƯCLN(a,b) . BCNN(a,b)
 - Nếu lấy BCNN(a,b) chia cho từng số a và b thì các thương của chúng là những số nguyên tố cùng nhau.
 - Nếu a m và an thì a chia hết cho BCNN(m,n). Từ đó suy ra
 + Nếu một số chia hết cho hai số nguyên tố cùng nhau thì nó chia hết cho tích của chúng.
 + Nếu một số chia hết cho các số nguyên tố cùng nhau đôi một thì nó chia hết cho tích của chúng.
Bài tập. 
Bài 1. Tìm ƯCLN rồi tìm ƯC của 48 và 120.
Bài 2. Tìm số tự nhiên a lớn nhất, biết rằng 120a và 150 a.
Bài 3. Tìm số tự nhiên x biết rằng 210 x , 126 x và 10 < x < 35.
Bài 4. Tìm số tự nhiên a nhỏ nhất khác 0, biết rằng a120 và a86.
Bài 5. Tìm các bội chung nhỏ hơn 300 của 25 và 20.
Bài 6. Một đội y tế có 24 bác sỹ và 108 y tá. Có thể chia đội y tế đó nhiều nhất thành mấy tổ để số bác sỹ và y tá được chia đều cho các tổ?
Bài 7. Một số sách khi xếp thành từng bó 10 cuốn, 12 cuốn, 15 cuốn, 18 cuốn đều vừa đủ bó. Biết số sách trong khoảng 200 đến 500. Tìm số sách.
Bài 8. Một liên đội thiếu niên khi xếp hàng 2, hàng 3, hàng 4, hàng 5 đều thừa 1 người. Tính số đội viên của liên đội đó biết rằng số đó trong khoảng từ 100 đến 150. 
Bài 9. Một khối học sinh khi xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người, nhưng xếp hàng 7 thì và đủ. Biết rằng số học sinh đó chưa đến 300. Tính số học sinh đó.
Bài 10. Một con chó đuổi một con thỏ cách nó 150 dm. Một bước nhảy của chó dài
 9 dm, một bước nhảy của thỏ dài 7 dm và khi chó nhảy một bước thì thỏ củng nhảy một bước. Hỏi chó phải nhảy bao nhiêu bước mới đuổi kịp thỏ?
Bài 11. Tôi nghĩ một số có ba chữ số.
Nếu bớt số tôi nghĩ đi 7 thì được số chia hết cho 7.
Nếu bớt số tôi nghĩ đi 8 thì được số chia hết cho 8.
Nếu bớt số tôi nghĩ đi 9 thì được số chia hết cho 9.
Hỏi số tôi nghĩ là số nào?
Bài 12. chứng minh rằng hai số tự nhiên liên tiếp là hai số nguyên tố cùng nhau.
Bài 13. CMR các số sau đây nguyên tố cùng nhau.
Hai số lẻ liên tiếp.
2n + 5 và 3n + 7.
Bài 14. ƯCLN của hai số là 45. Số lớn là 270, tìm số nhỏ.
Bài 15. Tìm hai số biết tổng của chúng là 162 và ƯCLN của chúng là 18.
Bài 16. Tìm hai số tự nhiên a và b, biết rằng BCNN(a,b) = 300; ƯCLN(a,b) = 15.
Bài 17. Tìm hai số tự nhiên a và b biết tích của chúng là 2940 và BCNN của chúng 
 là 210.
Bài 18. Tìm số tự nhiên a nhỏ nhất khi chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5.
Bài 19. Tìm số tự nhiên nhỏ nhất khi chia cho 3, cho 4, cho 5 có số dư theo thứ tự là 1;3;1.
Bài 20. Cho ƯCLN(a,b)= 1. CMR
ƯCLN(a+b,ab) = 1.
Tìm ƯCLN(a+b, a-b).
Bài 21. Có 760 quả và cam, vừa táo, vừa chuối. Số chuối nhiều hơn số táo 80 quả, số táo nhiều hơn số cam 40 quả. Số cam, số táo, số chuối được chia đều cho các bạn trong lớp. Hỏi chia như vậy thì số học sinh nhiều nhất của lớp là bao nhiêu? mỗi phần có bao nhiêu quả mỗi loại?
Bài 22. a) Ước chung lớn nhất của hai số tự nhiên bằng 4, số nhỏ bằng 8. tìm số lớn.
b) Ước chung lớn nhất của hai số tự nhiên bằng 16, số lớn bằng 96, tìm số nhỏ.
Bài 23. Tìm hai số tự nhiên biết rằng :
Hiệu của chúng bằng 84,ƯCLN bằng 28, các số đó trong khoảng từ 300 đến 440.
Hiệu của chúng bằng 48, ƯCLN bằng 12.
Bài 24. Tìm hai số tự nhiên biết rằng:
Tích bằng 720 và ƯCLN bằng 6.
Tích bằng 4050 và ƯCLN bằng 3.
Bài 25. CMR với mọi số tự nhiên n , các số sau là hai số nguyên tố cùng nhau.
7n +10 và 5n + 7
2n +3 và 4n +8.
	TẬP HỢP Z CÁC SỐ NGUYÊN . THỨ TỰ TRONG Z
A) Kiến thức Bổ sung. 
1. với a, b Z bao giờ củng có một và chỉ một trong ba trường hợp a = b hoặc a > b hoặc a < b.
2. Với a, b, c Z nếu a < b, b < c thì a < c (tính chất bắc cầu)
3. Kí hiệu “ Hoặc”; kí hiệu “ và”
 nghĩa là A hoặc B
 nghĩa là A và B
Ví dụ: x > 3 hoặc x < -3 là 
x > -5 và x < 5 viết là -5 <x < 5 hay 
B. Bài tập: 
Bài tập 1. Mệnh đề sau đúng hay sai?
Nếu a < b thì 
(Để chứng tỏ một mệnh đề nào đó là sai ta chỉ cần đưa ra một ví dụ cụ thể mà mệnh đề sai. Một thí dụ như thế được gọi là một phản ví dụ)
Bài tập 2. Tìm x Z biết 
a) b) c) >4
Bài tập 3. Cho 
Tìm 
Bài tập 4. trong các mệnh đề sau, mệnh đề nào đúng? Mệnh đề nào sai?
Nếu a = b thì 
Nếu thì a = b
Nếu thì a < b.
Bài tập 5. Tìm x biết:
a) b) 
Bài tập 6. Tìm x, y, z Z biết .
Trả bài kiểm tra một tiết Số học và Hình học
Phép cộng hai số nguyên - Tính chất phép cộng các số nguyên
Bài tập 1. Tính nhanh.
2004 + [ 520 + (-2004)] b) [(-851) + 5924] + [(-5924) + 851]
c) 921 + [97 + (-921) + (-47)] d) 2003 + 2004 + (-2005) + (-2006).
Bài tập 2. Tính tổng các số nguyên x thỏa mãn.
a) - 7 x > -5 c) 
Bài tập 3. Tính tổng A = 2 + (-4) + (-6) + 8 + 10 + (-12) + (-14) + 16 + + 2010.
B = 1 + (-3) + (-5 ) + 7 + 9 +(-11) + (-13) + 15 + + 2009.
Bài tập 4. Cho x và y là hai số nguyên cùng dấu. Tính x + y biết 
Bài tập 5. Tìm các cặp số nguyên (x,y) thỏa mãn 
a) b) 
Bài tập 6. Với giá trị nào của x và y thì tổng S = đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Bài tập 7. Tìm số nguyên x biết rằng 
x + 4 là số nguyên dương nhỏ nhất 
10 -x là số nguyên âm lớn nhất
Bài tập 8. Tìm các số nguyên a, b, c biết rằng: a + b = 11, b + c = 3; c + a = 2.
Bài tập 9. Tìm các số nguyên a, b, c, d biết rằng:
a + b + c + d = 1,
a + c + d =2,
a + b + d = 3,
a + b + c = 4.
Bài tập 10. Cho x 1 + x2 + x3 + + x49 + x50 + x51 = 0 và x1+ x2 = x3 + x4 = = x47 + x48 = x49 + x50 = x50 + x51 = 1.Tính x50. 
ÔN TẬP HỌC KỲ I.
Dạng 1. Thực hiện các phép tính.
Bài 1. Tính nhanh. 
a) 32 . 47 + 32 . 53 b) (-24) + 6 + 10 + 24 c) (24 + 42) + (120 - 24 - 42) 
d) (13 - 145 + 49) - (13 + 49) e) 25 . 22 + (15 – 18 ) + (12 - 19 + 10)
Bài 2. Thực hiện các phép tính (tính nhanh nếu có thể)
a) 3.52 - 16:22 	 	b) 23.17 – 23.14 	 c) 20 – [ 30 – (5 - 1)]
d) 600 : [450 :{ 450 – (4.53 – 23 . 52 )}] e) 
Dạng 2. Tìm x
Bài 1. Tìm số tự nhiên x biết.
a) 6.x – 5 = 613 b) x – 15 = 24 c) 2.x – 138 = 23.32
d) 10 + 2.x = 45 : 43 e) 70 – 5.(x - 3) = 45 g) 315 + (146 – x ) = 401 
Bài 2. Tìm số nguyên x biết 
a) 3 + x = 7 b) x + 9 = 2 c) 11 – (15 + 21) = x – (25 -9)
d) 2 – x = 17 –(- 5) e) x – 12 = (-9) – 15 g) 9 – 25 = (7 –x ) – (25 + 7)
Dạng 3. ƯC - ƯCLN – BC – BCNN
Bài 1. Tìm ƯCLN rồi tìm các ƯC của 90 và 126.
Bài 2. Tìm số tự nhiên a lớn nhất biết rằng 480a và 600a.
Bài 3. Tìm số tự nhiên x biết rằng 126x, 210x và 15 < x < 30.
Bài 4. Tìm số tự nhiên a nhỏ nhất khác 0 biết rằng a126; a198.
Bài 5. Tìm các bội chung của 15 và 25 mà nhỏ hơn 400.
Bài 6. Biết số học sinh của một trường trong khoảng 700 đến 800 học sinh, Khi xếp hàng 30, hàng 36, hàng 40 đều thừa 10 học sinh. Tính số học sinh của trường đó.
Dạng 4. Hình học. a) Vẽ đoạn thẳng AB = 8 cm. Trên AB lấy hai điểm M, N sao cho; AM = 3 cm; An = 6 cm.
b) Tính độ dài các đoạn thẳng MN,NB.
Hỏi M có phải là trung điểm của đoạn AN hay không? vì sao?
Ôn tập về Quy tắc dấu ngoặc – Quy tắc chuyển vế
Bài tập 1. Tìm số nguyên x biết.
 a) 5 – x = 17 –(-5) ; 	 b) x – 12 = (-9) –(-15) ; 
 c) 9 –25 = (-7 – x ) – (25 - 7)	 d) 11 + (15 - 11 ) = x – (25 - 9)
 e) 17 – {-x – [-x – (-x)]}=-16 g) x + {(x + 3 ) –[(x + 3) – (- x - 2)]} = x
Bài tập 2. Tính các tổng sau một cách hợp lý:
 a) 2075 + 37 – 2076 – 47 ; b) 34 + 35 + 36 + 37 – 14 – 15 – 16 – 17
 c) – 7624 + (1543 + 7624) ; d) (27 – 514 ) – ( 486 - 73)
Bài tập 3. Rút gọn các biểu thức.
x + 45 – [90 + (- 20 ) + 5 – (-45)] ; b) x + (294 + 13 ) + (94 - 13)
Bài tập 4. Đơn giản các biểu thức.
 a) – b – (b – a + c) ;	 b) –(a – b + c ) – (c - a) 
 c) b – (b + a – c ) ;	 d) a – (- b + a – c) 
Bài tập 5. Bỏ ngoặc rồi thu gọn các biểu thức sau.
(a + b ) – (a – b ) + (a – c ) – (a + c)
(a + b – c ) + (a – b + c ) – (b + c - a) – (a – b – c)
Bài tập 6. Xét biểu thức. N = -{-(a + b) – [(a – b ) – (a + b)]}
Bỏ dấu ngoặc và thu gọn
Tính giá trị của N biết a = -5; b = -3.
Bài tập 7. Tìm số nguyên x biết.
 a) b) 
Bài tập 8. Chứng minh đẳng thức
(- a + b + c) + (b + c - 1) = (b – c + 6 ) –(7 – a + b )
Bài tập 9. Cho A = a + b – 5 B = - b – c + 1
 C = b – c – 4 D = b – a
Chứng minh: A + B = C + DBài tập 10. Viết 5 số nguyên vào 5 đỉnh của một ngôi sao 5 cánh sao cho tổng của hai số tại hai đỉnh liền nhau luôn bằng -6
Buổi 14. Ôn tập chương II.
I. Ôn tập lý thuyết.
1. Giá trị tuyệt đối của số nguyên a là gì? cách tính giá trị tuyệt đối của một số nguyên dương, số nguyên âm, số 0.
2. Phát biểu quy tắc cộng hai số nguyên cùng dấu, cộng hai số nguyên khác dấu.
3. Phát biểu quy tắc trừ hai số nguyên, nhân hai số nguyên.
4. Viết dưới dạng công thức các tính chất của phép cộng, phép nhân các số nguyên.
II. Bài tập.
Dạng 1. Thực hiện các phép tính 
Bài 1. Tính.
a) (-15) + 24 ; b) (-25) - 30 ; c) (-15) + 30 ; d) (-13) + (-35) 
e) (-34) . 30 ; g) (-12) . (-24) h) 36 : (-12) 	i) (-54) : (-3)
Bài 2. Thực hiện các phép tính(tính nhanh nếu có thể).
a) (-5).6.(-2).7 b) 123 - (-77) - 12.(-4) + 31 c) 3.(-3)3 + (-4).12 - 34
d) (37 - 17).(-5) + (-13 - 17) ; e) 34. (-27) + 27. 134 ; g) 24.36 - (-24).64
Dạng 2. Tìm số nguyên x biết 
Bài 1. Tìm số nguyên a biết 
a) ; 	b) 	c) 	d) 
Bài 2. Tìm số nguyên x biết.
a) x + 12 = 3;	b) 2.x - 15 = 21; 	c) 13 - 3x = 4
d) 2(x - 2) + 4 = 12; 	e) 15 - 3(x - 2) = 21; 	g) 25 + 4(3 - x) = 1
h) 3x + 12 = 2x - 4; 	i) 14 - 3x = -x + 4 ; 	k) 2(x - 2)+ 7 = x - 25
Bài 3. Tìm số nguyên n để 
a) n + 5 chia hết cho n -1 ; 	 b) 2n - 4 chia hết cho n + 2
c) 6n + 4 chia hết cho 2n + 1	d) 3 - 2n chia hết cho n+1
Buổi 15. Ôn luyện về Hai phân số bằng nhau - Tính chất cơ bản của phân số -Rút gọn phân số
A. Kiến thức cơ bản:
1. Hai phân số và gọi là bằng nhau nếu a.d = b.c
2. Tính chất cơ bản của phân số.
 (nƯC(a,b))
3. +)Muốn rút gọc một phân số ta chia cả tử và mẫu của phân số cho một ước chung (khác ) của chúng để được một phấn số mới đơn giản hơn.
+) Phân số tối giản là phấn số mà tử và mẫu chỉ có ước chung là .
 tối giản ()=1.
B. Kiến thức bổ sung.
1. Nếu đổi chổ cả tử và mẫu của một phân số thì ta được một phân số mí bằng phân số đã cho. a) và b) và 
2. Muốn rút gọn một phân số thành phân số tối giản ta chia cả tử và mẫu của nó cho ƯCLN. 
3. Nếu là phân số tói giản thì mọi phân số bằng nó đều có dạng 
C. Bài tập: 
 Bài tập 1. Tìm các số nguyên x và y biết.
 a). b) c) d) 
Bài tập 2. Viết các phân số sau đay dưới dạng phân số có mẫu dương.
 (với a < 3); 
Bài tập 3. Trong các phân số sau, những phân số nào bằng nhau.
Bài tập 4. Tìm x biết 
 a) b)
 Bài tập 5. Tìm n Z để các phân số sau đồng thời có giá trị nguyên.
Bài tập 6. Cho . Tìm n Z để A có giá trị nguyên.
Bài tập 7. Tìm x Z biết.
 a) b) c) 
Bài tập 8. Viết tập hợp A các phân số bằng phân số -7/15 với mẫu dương có hai chữ số.
Bài tập 9. Tìm phân số bằng phân số 32/60, biết tổng của tử và mẫu bằng 115.
Bài tập 10. Rút gọn các phân số sau.
Bài tập 11. Cho phân số . CMR : thì 
Bài tập 12. Rút gọn phân số mà không cần thực hiện các phép tính ở tử.
Bài tập 13. Hai phân số sau có bằng nhau hay không?
Bài tập 14. Tìm phân số a/b bằng phân số 60/108, biết:
 a) ƯCLN(a,b) = 15 ; b) BCNN(a,b)=180
Bài tập 15. CMR với n N*, các phân số sau là phân số tối giản
a) ; b) 
Bài tập 16. 1) CMR nếu thì a = b = c
2) Tìm x, y, z biết và x + z = 7 + y
Buổi 16. Một số bài toán về phân số.
A. Chữa bài tập về nhà.
Bài tập 1. Rút gọn phân số.
Giải. (Đưa các luỹ thừa về luỹ thừa của các số nguyên tố, sau đó rút gọn).
Bài tập 2. Cho phân số . CMR : thì 
Giải. 
Bài tập 3. CMR với n N*, các phân số sau là phân số tối giản 
Giải. Giả sử (3n - 2;4n - 3) = d do n N* d N
suy ra: 3n - 2 d và 4n - 3 d.
 3n - 2 d 12n - 8 d. 
 Mặt khác 4n - 3 d 12n - 9 d (12 n - 8) - 1d 1d hay suy ra d = 1
Vậy các phân số với n N* là phân số tối giản.
B. Bài tập 
Bài tập 1. Tìm phân số có mẵu bằng 9, biết rằng khi cộng tử với 10 và nhân mẫu với 3 thì giá trị của phân số không thay đổi.
Bài tập 2. Tìm phân số có tử bằng -7, biết rằng khi nhân tử với 3 và cộng mẫu với 26 thì giá trị của phân số không thay đổi.
Bài tập 3. Cho phân số ; cần bớt cả tử và mẫu cùng một số bằng bao nhiêu để được phân số bằng 1/2
Bài tập 4. Cho phân số a/b có b - a = 25. phân số a/b sau khi rts gọn thì được phân số 63/68. Tìm phân số a/b.
Bài tập 5. Lớp 6A có 4/5 số học sinh thích bóng bàn, 7/10 số học sinh thích bóng chuyền, 23/25 số học sinh thích bóng đá. Môn bóng nào được nhiều bạn lớp 6A yêu thích nhất?
Bài tập 6. Sắp xếp các phân số sau theo thứ tự tăng dần.
a) 	b) 
Bài tập 7. Tìm các số nguyên x,y sao cho 
Bài tập 8. So sánh và 
Buổi 17. Ôn tập về phép cộng phân số - Tính chất cơ bản của phép cộng phân số.
A. Kiến thức cơ bản.
1. Cộng hai phân số cùng mẫu. 
2. Cộng hai phân số không cùng mẫu.
 - Quy đồng mẫu các phân số.
- Cộng các tử và giữ nguyên mẫu.
3. Các tính chất giao hoán, kết hợp, cộng với 0 của phép cộng các số nguyên có thể mở rộng cho phép cộng phân số.
* Nâng cao. Phân số Ai Câp là phân sô có dạng 
Bất kỳ một phân số dương nào cũng có thể biểu diễn thành tổng của các phân số Ai Cập khác nhau. 
B. Bài tập. 
Bài tập 1. Tính các tổng sau.
a)	b)	c)
Bài tập 2. Tính bằng cách hợp lý.
a) b) 
c) 	 d) 
Bài tập 3. Chứng minh rằng các tổng sau lớn hơn 1.
a) 	b) 
Bài tập 4. Tìm x biết 
Bài tập 5. Một người đi xe đạp từ A đến B hết 5 giờ; Người thứ hai đi xe máy từ B về A hết 2 giờ; Người đi xe máy khởi hành sau người đi xe đạp 2 giờ. Hỏi sau khi người đi xe máy đi được 1 giờ thì hai người đã gặp nhau chưa?
Bài tập 6. Tìm x biết.
a) ;	b) ; 	c) 
Bài tập 7. Chia đều 7 quả táo cho 8 em bé sao cho mỗi em bé đều được 3 phần.
Bài tập 8. Cho phân số 
a) Tìm n Z để A có giá trị nguyên.
b) Tìm n Z để A có 
Bài tập về nhà:
Bài tập 9.(Về nhà) Cho phân số 
a) Tìm n Z để B có giá trị nguyên.
b) Tìm giá trị lớn nhất của B. 
Bài tập 10. Cho 
Chứng minh rằng 1 < S < 2 từ đó suy ra S không phải là số tự nhiên.
Bài tập 11. Cho 
Chứng minh rằng 
Buổi 18. Luyện tập về phép trừ - phép nhân phân số -Tính chất của phép nhân phân số.
Bài tập 1. Tìm số đối của các số sau: ;-4; ; ; ; 0 ; 16
Bài tập 2. Tính 
 a) - 	b) - 	c) - 	 d) - 	 e) - 
 g) - 	h) - 	i) 1 - 	 k) 2 - 	 l) - 1
Bài tập 3. Hai vòi nước cùng chảy vào một cái bể không có nước. Trong một giờ vòi thứ nhất chảy được bể., vòi thứ hai chảy bể. Hỏi vòi nào chảy nhanh hơn và trong một giờ cả hai vòi chảy được bao nhiêu phần bể?
Bài tập 4. Luc 6h50' bạn Việt đi xe từ A đến B với vận tốc 15 km/h. Lúc 7h10' bạn Nam đi xe từ B đến A với vận tốc 12km/h. Hai bạn gặp nhau tại C lúc 7h30'. Tính quảng đường AB.
Bài tập 5. Tính
 a) - . 	 b) . c) . 	d) . (- 21)
Bài tập 6. Tính nhanh.
 a) M = . . . . 	b) N = . + . + . + . 
 c) P = . + . - . 	d) Q = ( ) . - ( )2. 
Bài tập 7. Tìm x biết 
 a) x - = 	b) - x = + 	c) x - = . 	 d) = . 
Bài tập 8. Tính chu vi và diện tích của một hình vuông có cạnh dm.
Bài tập 9. Tính tích: P = (1 - ).(1 - ).(1 - )...(1 

Tài liệu đính kèm:

  • docboi_duong_hoc_sinh_gioi_mon_toan_lop_6_mai_huong.doc