Bộ đề thi học sinh giỏi môn Toán Lớp 6 - Phần 1

Bộ đề thi học sinh giỏi môn Toán Lớp 6 - Phần 1

Bài 3. Cho 1số có 4 chữ số: . Điền các chữ số thích hợp vào dấu (*) để được số có 4 chữ số khác nhau chia hết cho tất cả 4số : 2; 3 ; 5 ; 9.

Bài 4. Tìm số tự nhiên n sao cho : 1! +2! +3! +.+n! là số chính phương?

Bài 5. Hai xe ôtô khởi hành từ hai địa điểm A,B đi ngược chiều nhau. Xe thứ nhất khởi hành từ A lúc 7 giờ. Xe thứ hai khởi hành từ B lúc 7 giờ 10 phút. Biết rằng để đi cả quãng đường AB . Xe thứ nhất cần 2 giờ , xe thứ hai cần 3 giờ. Hỏi sau khi đi 2 xe gặp nhau lúc mấy giờ?

Bài 6. Cho góc xOy có số đo bằng 1200 . Điểm A nằm trong góc xOy sao cho: . Điểm B nằm ngoài góc xOy mà : . Hỏi 3 điểm A,O,B có thẳng hàng không? Vì sao?

 

doc 33 trang tuelam477 4102
Bạn đang xem 20 trang mẫu của tài liệu "Bộ đề thi học sinh giỏi môn Toán Lớp 6 - Phần 1", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề số 1
 Thời gian làm bài: 120 phút (không kể thời gian chép đề)
Bài 1 (3điểm)
a, Cho A = 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5
b, Chứng tỏ rằng: + + + + + > 
Bài 2 (2,5điểm)
Tổng số trang của 8 quyển vở loại 1 ; 9 quyển vở loại 2 và 5 quyển vở loại 3 là 1980 trang. Số trang của một quyển vở loại 2 chỉ bằng số trang của 1 quyển vở loại 1. Số trang của 4 quyển vở loại 3 bằng số trang của 3 quyển vở loại 2. Tính số trang của mỗi quyển vở mỗi loại.
Bài 3: (2điểm).
 Tìm số tự nhiên n và chữ số a biết rằng: 
1+ 2+ 3+ .+ n = 
Bài 4 (2,5 điểm) 
a, Cho 6 tia chung gốc. Có bao nhiêu góc trong hình vẽ ? Vì sao.
b, Vậy với n tia chung gốc. Có bao nhiêu góc trong hình vẽ.
Đề số 2
Thời gian làm bài 120 phút – (không kể thời gian chép đề)
Bài 1 (3điểm)
a. Tính nhanh: A = 
b. Chứng minh : Với kN* ta luôn có : .
áp dụng tính tổng : S = .
Bài 2 (3điểm)
a.Chứng minh rằng : nếu thì : .
b.Cho A = Chứng minh : A 3 ; 7 ; 15.
Bài 3 (2điểm). Chứng minh : < 1.
Bài 4(2 điểm).
a. Cho đoạn thẳng AB = 8cm. Điểm C thuộc đường thẳng AB sao cho BC = 4cm. Tính độ dài đoạn thẳng AC.
b. Cho 101 đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau và không có ba đường thẳng nào cùng đi qua một điểm. Tính số giao điểm của chúng.
Đề số 3
Thời gian làm bài: 120 phút.
Câu 1: (3đ)
 Thực hiện phép tính bằng cách hợp lí :
A = 
B = 
Câu 2: (2đ)
 Tìm các cặp số (a,b) sao cho : 
Câu 3: (2đ)
Cho A = 31 +32+33 + .....+ 32006 
a) Thu gọn A
b) Tìm x để 2A+3 = 3x
Câu 4: (1đ)
 So sánh: A = và B = 
Câu 5: (2đ)
 Một học sinh đọc quyển sách trong 3 ngày. Ngày thứ nhất đọc được số trang sách; ngày thứ 2 đọc được số trang sách còn lại; ngày thứ 3 đọc được 80% số trang sách còn lại và 3 trang cuối cùng. Hỏi cuốn sách có bao nhiêu trang?
Đề số 4
Thời gian làm bài: 120 phút
Bài 1(2đ)
a)Tính tổng S = b) So sánh: A = và B = 
Bài 2 (2đ)
	a. Chứng minh rằng: C = 2 + 22 + 2 + 3 + + 299 + 2100 chia hết cho 31
	b. Tính tổng C. Tìm x để 22x – 1 - 2 = C
Bài 3 (2đ)
 Một số chia hết cho 4 dư 3, chia cho 17 dư 9, chia cho 19 dư 13. Hỏi số đó chia cho1292 dư bao nhiêu
Bài 4 (2đ)
 Trong đợt thi đua, lớp 6A có 42 bạn được từ 1 điểm 10 trở lên, 39 bạn được 2 điểm 10 trở lên, 14 bạn được từ 3 điểm 10 trở lên, 5 bạn được 4 điểm 10, không có ai được trên 4 điểm 10. Tính xem trong đợt thi đua lớp 6A được bao nhiêu điểm 10
Câu 5 (2đ)
 Cho 25 điểm trong đó không có 3 điểm thẳng hàng. Cứ qua 2 điểm ta vẽ một đường thẳng. Hỏi có tất cả bao nhiêu đường thẳng?
Nếu thay 25 điểm bằng n điểm thì số đường thẳng là bao nhiêu.
Đề số 5
Thời gian làm bài: 120 phút
Bài 1. Tính các giá trị của biểu thức.
	a. A = 1 + 2 + 3 + 4 + .........+ 100
	b. B = -1
	c. C = 
Bài 2. So sánh các biểu thức :
	a. 3200 và 2300 
	b. A = với B = .	
Bài 3. Cho 1số có 4 chữ số: . Điền các chữ số thích hợp vào dấu (*) để được số có 4 chữ số khác nhau chia hết cho tất cả 4số : 2; 3 ; 5 ; 9.
Bài 4. Tìm số tự nhiên n sao cho : 1! +2! +3! +...+n! là số chính phương?
Bài 5. Hai xe ôtô khởi hành từ hai địa điểm A,B đi ngược chiều nhau. Xe thứ nhất khởi hành từ A lúc 7 giờ. Xe thứ hai khởi hành từ B lúc 7 giờ 10 phút. Biết rằng để đi cả quãng đường AB . Xe thứ nhất cần 2 giờ , xe thứ hai cần 3 giờ. Hỏi sau khi đi 2 xe gặp nhau lúc mấy giờ?
Bài 6. Cho góc xOy có số đo bằng 1200 . Điểm A nằm trong góc xOy sao cho: . Điểm B nằm ngoài góc xOy mà :. Hỏi 3 điểm A,O,B có thẳng hàng không? Vì sao?
Đề số 6
Thời gian làm bài: 120’
Bài 1:(1,5đ) Tìm x
	a) 5x = 125; 	b) 32x = 81 ; 	c) 52x-3 – 2.52 = 52.3
Bài 2: (1,5đ) Cho a là số nguyên. Chứng minh rằng: 
Bài 3: (1,5đ) Cho a là một số nguyên. Chứng minh rằng:
a. Nếu a dương thì số liền sau a cũng dương.
b. Nếu a âm thì số liền trước a cũng âm.
c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?
Bài 4: (2đ)Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương.
Bài 5: (2đ)
 Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10.
Bài 6: (1,5đ)
 Cho tia Ox. Trên hai nữa mặt phẳng đối nhău có bờ là Ox. Vẽ hai tia Oy và Oz sao cho góc xOy và xOz bắng 1200. Chứng minh rằng:
a. 
b. Tia đối của mỗi tia Ox, Oy, Oz là phân giác của góc hợp bởi hai tia còn lại. 
Đề số 7
Thời gian làm bài 120 phút
Bài 1( 8 điểm )
1. Tìm chữ số tận cùng của các số sau: 
 	 a) 571999 b) 931999
2. Cho A= 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5.
3 . Cho phân số ( a<b) cùng thêm m đơn vị vào tử và mẫu thì phân số mới lớn hơn hay bé hơn ?
4. Cho số có 12 chữ số . chứng minh rằng nếu thay các dấu * bởi các chưc số khác nhau trong ba chữ số 1,2,3 một cách tuỳ ‎ thì số đó luôn chia hết cho 396.
5. chứng minh rằng:
	a) ; 	b) 
Bài 2: (2 điểm )
Trên tia Ox xác định các điểm A và B sao cho OA = a(cm), OB = b (cm) 
a) Tính độ dài đoạn thẳng AB, biết b< a 
b) Xác định điểm M trên tia Ox sao cho OM = (a+b).
Đề số 8
Thời gian làm bài: 120 phút
Câu 1: (2đ)
Thay (*) bằng các số thích hợp để
a) ; chia hết cho 3. b) chia hết cho 2 và chia 3 dư 1
Câu 2: (1,5đ) Tính tổng S = 1.2 + 2.3 + 3.4 + ... + 99.100
Câu 3: (3,5 đ)
	Trên con đường đi qua 3 địa điểm A; B; C (B nằm giữa A và C) có hai người đi xe máy Hùng và Dũng. Hùng xuất phát từ A, Dũng xuất phát từ B. Họ cùng khởi hành lúc 8 giờ để cùng đến C vào lúc 11 giờ cùng ngày. Ninh đi xe đạp từ C về phía A, gặp Dũng luc 9 giờ và gặp Hùng lúc 9 giờ 24 phút. Biết quãng đường AB dài 30 km, vận tốc của ninh bằng 1/4 vận tốc của Hùng. Tính quãng đường BC
Câu 4: (2đ)
Trên đoạn thẳng AB lấy 2006 điểm khác nhau đặt tên theo thứ từ từ A đến B là A1; A2; A3; ...; A2004. Từ điểm M không nằm trên đoạn thẳng AB ta nối M với các điểm A; A1; A2; A3; ...; A2004 ; B. Tính số tam giác tạo thành
Câu 5: (1đ)
Tích của hai phân số là . Thêm 4 đơn vị vào phân số thứ nhất thì tích mới là . Tìm hai phân số đó.
Đề số 9
Thời gian làm bài 120 phút
Câu 1 : (2 điểm) Cho biểu thức 
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
Câu 2: (1 điểm) 
 Tìm tất cả các số tự nhiên có 3 chữ số sao cho và 
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
Câu 4: (2 điểm) 
a. Cho a, b, n Î N* Hãy so sánh và 
b. Cho A = ; B = . So sánh A và B.
Câu 5: (2 điểm)
 Cho 10 số tự nhiên bất kỳ : a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm) 
 Cho 2006 đường thẳng trong đó bất kì 2 đườngthẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
Đề số 10
Thời gian làm bài: 120 phút
Câu 1: Tính tổng 
Câu 2: Tìm số tự nhiên a, b, c, d nhỏ nhất sao cho:
; ; 
Câu 3: Cho 2 dãy số tự nhiên 1, 2, 3, ..., 50
a) Tìm hai số thuộc dãy trên sao cho ƯCLN của chúng đạt giá trị lớn nhất.
b) Tìm hai số thuộc dãy trên sao cho BCNN của chúng đạt giá trị lớn nhất.
Câu 4: Cho bốn tia OA, OB, OC, OD, tạo thành các góc AOB, BOC, COD, DOA không có điểm chung. Tính số đo của mổi góc ấy biết rằng: ; ; 
Đề số 11
Thời gian làm bài: 120 phút
Câu 1: (3đ).
a. Kết quả điều tra ở một lớp học cho thấy: Có 20 học sinh thích bóng đá, 17 học sinh thích bơi, 36 học sinh thích bóng chuyền, 14 học sinh thích đá bóng và bơi, 13 học sinh thích bơi và bóng chuyền, 15 học sinh thích bóng đá và bóng chuyền, 10 học sinh thích cả ba môn, 12 học sinh không thích môn nào. Tính xem lớp học đó có bao nhiêu học sinh?
b. Cho số: A = 123456789101112 .585960.
- Số A có bao nhiêu chữ số?
- Hãy xóa đi 100 chữ số trong số A sao cho số còn lại là:
+ Nhỏ nhất + Lớn nhất
Câu 2: (2đ).
a. Cho A = 5 + 52 + + 596. Tìm chữ số tận cùng của A.
b.Tìm số tự nhiên n để: 6n + 3 chia hết cho 3n + 6
Câu 3: (3đ).
a. Tìm một số tự nhiên nhỏ nhất biết rằng khi chia số đó cho 3 dư 2, cho 4 dư 3, cho 5 dư 4 và cho 10 dư 9.
b. Chứng minh rằng: 11n + 2 + 122n + 1 Chia hết cho 133.
Câu 4: (2đ). Cho n điểm trong đó không có 3 điểm nào thẳng hàng . Cứ qua hai điểm ta vẽ 1 đường thẳng. Biết rằng có tất cả 105 đường thẳng. Tính n?
-----------------------------------------------------------
Đề số 12
Thời gian làm bài: 120 phút (không kể thời gian giao đề)
Bài 1:(2,25 điểm)	Tìm x biết
a) x + 	b) x - 	c) (x – 32).45=0
Bài 2:(2,25 điểm)	Tính tổng sau bằng cách hợp lý nhất:
A = 11 + 12 + 13 + 14 + ..+ 20. B = 11 + 13 + 15 + 17 + ..+ 25.
C = 12 + 14 + 16 + 18 + ..+ 26.
Bài 3:(2,25 điểm)	Tính:
A= B = 
C = 
Bài 4:(1 điểm)	
Cho:	A= .	Hãy so sánh A và B.
Bài 5:(2,25 điểm)
Cho đoạn thẳng AB dài 7cm. Trên tia AB lấy điểm I sao cho AI = 4 cm. Trên tia BA lấy điểm K sao cho BK = 2 cm.
Hãy chứng tỏ rằng I nằm giữa A và K.
Tính IK.	
Đề số 13
Thời gian làm bài: 120 phút (không kể thời gian giao đề)
Bài 1: ( 3 điểm)
a. Chứng tỏ rằng tổng sau khôngm chia hết cho 10:
	A = 405n + 2405 + m2 ( m,n N; n ≠ 0 )
b. Tìm số tự nhiên n để các biểu thức sau là số tự nhiên:
	B = 
c. Tìm các chữ số x ,y sao cho: C = chia hết cho 55
Bài 2 (2 điểm )
a. Tính tổng: M = 
b. Cho S = . Chứng minh rằng : 1< S < 2
Bài 3 ( 2 điểm)
 Hai người đi mua gạo. Người thứ nhất mua gạo nếp , người thứ hai mua gạo tẻ. Giá gạo tẻ rẻ hơn giá gạo nếp là 20%. Biết khối lượng gạo tẻ người thứ hai mua nhiều hơn khối lượng gạo nếp là 20%. Hỏi người nào trả tiền ít hơn? ít hơn mâya % so với người kia?
Bài 4 ( 3 điểm)
 Cho 2 điểm M và N nằm cùng phía đối với A, năm cùng phía đối với B. Điểm M nằm giữa A và B. Biết AB = 5cm; AM = 3cm; BN = 1cm. Chứng tỏ rằng: 
a. Bốn điểm A,B,M,N thẳng hàng
b. Điểm N là trung điểm của đoạn thẳng MB
c. Vẽ đường tròn tâm N đi qua B và đường tròng tâm A đi qua N, chúng cắt nhau tại C, tính chu vi của ΔCAN .
 Đề số 14
Thời gian làm bài: 120 phút (không kể thời gian giao đề)
Bài 1( 2 điểm): a)Tìm x biết: b) Tìm x, y N biết 2x + 624 = 5y
Bài 2( 2 điểm): 
a) So sánh: và b) So sánh: và 
Bài 3( 2 điểm): Tìm số tự nhiên có 3 chữ số, biết rằng khi chia số đó cho các số 25 ; 28 ; 35 thì được các số dư lần lượt là 5 ; 8 ; 15. 
 Bài 4( 2 điểm): 
Ba máy bơm cùng bơm vào một bể lớn , nếu dùng cả máy một và máy hai thì sau 1 giờ 20 phút bể sẽ đầy, dùng máy hai và máy ba thì sau 1 giờ 30 phút bể sẽ đầy còn nếu dùng máy một và máy ba thì bể sẽ đầy sau 2 giờ 24 phút. Hỏi nếu mỗi máy bơm được dùng một mình thì bể sẽ đầy sau bao lâu?
Bài 5( 2 điểm): Cho góc tù xOy. Bên trong góc xOy, vẽ tia Om sao cho góc xOm bằng 900 và vẽ tia On sao cho góc yOn bằng 900.
Chứng minh góc xOn bằng góc yOm.
Gọi Ot là tia phân giác của góc xOy.Chứng minh Ot cũng là tia phân giác của góc mOn.	
ĐỀ SỐ 15
Thời gian làm bài: 120 phút.
Bài 1: (6,0 điểm).Tính nhanh:
	a) A = 
	b) B = (-528) + (-12) + (-211) + 540 + 2225
 	c) M = 
d) D = 
e) So sánh: N = và M = 
Bài 2: (3,0 điểm) Cho S = 1 – 3 + 32 – 33 + ... + 398 – 399.
 a) Chứng minh rằng S là bội của -20.
 b) Tính S, từ đó suy ra 3100 chia cho 4 dư 1.
Bài 3: (5,0 điểm).
Tìm hai số tự nhiên biết tổng của chúng bằng 504 và ƯCLN của chúng bằng 42
 Tìm a để a + 1 là bội của a – 1
Cho K = 1028 + 8. Chứng minh rằng K chia hết cho 72
Bài 4: (4,0 điểm). Trên đường thẳng AM lấy một điểm O (O nằm giữa A và M). Trên cùng một nửa mặt phẳng bờ AM vẽ các tia OB, OC sao cho: góc MOC = 1150; góc BOC = 700. Trên nửa mặt phẳng đối diện dựng tia OD (D không cùng nằm trong nửa mặt phẳng với B,C qua bờ là AM) sao cho góc AOD = 450.
a) Tia OB nằm giữa hai tia OM, OC không? vì sao?
b) Tính góc MOB và góc AOC ?
c) Chứng tỏ rằng 3 điểm D, O, B thẳng hàng.
Bài 5: (2,0 điểm). Trong mét cuéc thi cã 50 c©u hái. Mçi c©u tr¶ lêi ®óng ®­îc 20 ®iÓm, cßn tr¶ lêi sai bÞ trõ 15 ®iÓm. Mét häc sinh ®­îc tÊt c¶ 650 ®iÓm. Hái b¹n ®ã tr¶ lêi ®­îc mÊy c©u ®óng ?
Họ và tên thí sinh:.............................................Số báo danh: ................................
Đề số 1
 Thời gian làm bài: 120 phút (không kể thời gian chép đề)
Bài 1 (3điểm)
a, Cho A = 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5
b, Chứng tỏ rằng: + + + + + > 
Bài 2 (2,5điểm)
Tổng số trang của 8 quyển vở loại 1 ; 9 quyển vở loại 2 và 5 quyển vở loại 3 là 1980 trang. Số trang của một quyển vở loại 2 chỉ bằng số trang của 1 quyển vở loại 1. Số trang của 4 quyển vở loại 3 bằng số trang của 3 quyển vở loại 2. Tính số trang của mỗi quyển vở mỗi loại.
Bài 3: (2điểm).
 Tìm số tự nhiên n và chữ số a biết rằng: 
1+ 2+ 3+ .+ n = 
Bài 4 (2,5 điểm) 
a, Cho 6 tia chung gốc. Có bao nhiêu góc trong hình vẽ ? Vì sao.
b, Vậy với n tia chung gốc. Có bao nhiêu góc trong hình vẽ.
Đáp án đề số 1
Bài 1:
a) (1,5đ). Để chứng minh A 5, ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng. Ta có: 31999 = ( 34)499 . 33 = 81499. 27
Suy ra: 31999 có tận cùng là 7 
	71997 = ( 74)499 .7 = 2041499 . 7 7 1997 Có tận cùng là 7
Vậy A có tận cùng bằng 0 A 5
b) (1,5điểm) Ta thấy: đến có 40 phân số.
Vậy : 
	= () + ( .+ ) 	(1) 
Vì ..> và > > > 	(2)
Ta có : ( .+ ) + (+ + .+) 
	= 	 (3)
Từ (1) , (2), (3) Suy ra:
	 >
Bài 2: Vì số trang của mỗi quyển vỡ loại 2 bằng số trang của 1 quyển loại 1. 
 Nên số trang của 3 quyển loại 2 bằng số trang của 2 quyển loại 1
	 Mà số trang của 4 quyển loại 3 bằng 3 quyển loại 2.
 Nên số trang của 2 quyển loại 1 bằng số trang của 4 quyển loại 3 
 Do đó số trang của 8 quyển loại 1 bằng :	4 .8 : 2 = 16 ( quyển loại 3)
	Số trang của 9 quyển loại 2 bằng	9 .4 : 3 = 12 (quỷên loại 3)
	Vậy 1980 chính là số trang của 16 + 12+ 5 = 33(quyển loại 3)
Suy ra: Số trang 1 quyển vở loại 3 là 1980 : 33 = 60 ( trang)
	Số trang 1 quyển vở loại 2 là (trang)
	Số trang 1 quyển vở loại1 là; ( trang)
Bài 3: 
Từ 1; 2; ; n có n số hạng
Suy ra 1 +2 + + n = 
Mà theo bài ra ta có 1 +2 +3+ ..+n = 
Suy ra = = a . 111 = a . 3.37 
Suy ra: n(n + 1) = 2.3.37.a
Vì tích n(n + 1) Chia hết cho số nguyên tố 37 nên n hoặc n + 1 Chia hết cho 37
Vì số có 3 chữ số Suy ra n+1 < 74 n = 37 hoặc n + 1 = 37
+) Với n = 37 thì ( loại)
+) Với n + 1 = 37 thì 	( thoả mãn)
Vậy n =36 và a = 6. Ta có: 1+2+3+ ..+ 36 = 666
Bài 4 : 
a) (1,5điểm)
Vì mỗi tia với 1 tia còn lại tạo thành 1 góc. Xét 1 tia, tia đó cùng với 5 tia còn lại tạo thành 5 góc. Làm như vậy với 6 tia ta được 5.6 góc. Nhưng mỗi góc đã được tính 2 lần do đó có tất cả là góc
b) (1điểm). Từ câu a suy ra tổng quát. Với n tia chung gốc có n( ) (góc).
Đề số 2
Thời gian làm bài 120 phút – (không kể thời gianchép đề)
Bài 1 (3điểm)
a. Tính nhanh: A = 
b. Chứng minh : Với kN* ta luôn có : .
áp dụng tính tổng : S = .
Bài 2 (3điểm)
a.Chứng minh rằng : nếu thì : .
b.Cho A = Chứng minh : A 3 ; 7 ; 15.
Bài 3 (2điểm). Chứng minh : < 1.
Bài 4(2 điểm).
a. Cho đoạn thẳng AB = 8cm. Điểm C thuộc đường thẳng AB sao cho BC = 4cm. Tính độ dài đoạn thẳng AC.
b. Cho 101 đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau và không có ba đường thẳng nào cùng đi qua một điểm. Tính số giao điểm của chúng.
Đáp án đề số 2
Bài 1.
 a. = .
b.Biến đổi :
áp dụng tính : 
Cộng lại ta có : .
Bài 2. 
a) Tách như sau : .
Do 
Mà : (theo bài ra) nên : 
b) Biến đổi :
*A =
=
*A = =
= = .
*A = =
==
Bài 3. Ta có : Áp dụng : 
 < 
Bài 4. 
a) Xét hai trường hợp :
*TH 1: C thuộc tia đối của tia BA. 
Hai tia BA, BC là hai tia đối nhau B nằm giữa A và C
 AC = AB + BC = 12 cm.
*TH 2 : C thuộc tia BA.
C nằm giữa A và B (Vì BA > BC) AC + BC = AB AC = AB - BC = 4 cm.
b) 
- Mỗi đường thẳng cắt 100 đường thẳng còn lại nên tạo ra 100 giao điểm.
- Có 101 đường thẳng nên có : 101.100 = 10100 giao diểm.
- Do mỗi giao điểm được tính hai lần nên số giao điểm là: 10100:2=5050 giao điểm.
Đề số 3
Thời gian làm bài: 120 phút.
Câu 1 : (3đ)
 Thực hiện phép tính bằng cách hợp lí :
A = 
B = 
Câu 2 : (2đ)
 Tìm các cặp số (a,b) sao cho : 
Câu 3 : (2đ)
Cho A = 31 +32+33 + .....+ 32006 
a) Thu gọn A
b) Tìm x để 2A+3 = 3x
Câu 4 : (1đ)
 So sánh: A = và B = 
Câu 5: (2đ)
 Một học sinh đọc quyển sách trong 3 ngày. Ngày thứ nhất đọc được số trang sách; ngày thứ 2 đọc được số trang sách còn lại; ngày thứ 3 đọc được 80% số trang sách còn lại và 3 trang cuối cùng. Hỏi cuốn sách có bao nhiêu trang?
Đáp án đề số 3
Câu 1 : 
1) A = = = 0 
2) B = 
 =
 = = 3 (1,5đ)
Câu 2: 2đ
 b = 0 => 9+a 9 => a = 0
 b =5 => 14+a 9 => a = 4
Câu 3: 2 đ
a) A = 31 +32+33 + .....+ 32006 3A =32+33 +34+ .....+ 32007 
 3A – A = 32007 -3 A = (1đ)
b) Ta có : 2. +3 = 3x 32007 -3 +3 = 3x 32007 = 3x x = 2007 (1đ)
Câu 4: 1đ
A = < = = = B. Vậy A < B 
Câu 5 : 2đ
Gọi x là số trang sách, x N 
Ngày 1 đọc được là trang
Số trang còn lại là x- = trang 
Ngày 2 đọc được là = trang
Số trang còn lại là - = trang 
Ngày thứ 3 đọc được là : .80% +30 = + 30
Hay : + + + 30 =x => x =625 trang
 ĐS 625 trang
Đề số 4
Thời gian làm bài: 120 phút
Bài 1(2đ)
a)Tính tổng S = b) So sánh: A = và B = 
Bài 2 (2đ)
	a. Chứng minh rằng: C = 2 + 22 + 2 + 3 + + 299 + 2100 chia hết cho 31
	b. Tính tổng C. Tìm x để 22x – 1 - 2 = C
Bài 3 (2đ)
 Một số chia hết cho 4 dư 3, chia cho 17 dư 9, chia cho 19 dư 13. Hỏi số đó chia cho1292 dư bao nhiêu
Bài 4 (2đ)
 Trong đợt thi đua, lớp 6A có 42 bạn được từ 1 điểm 10 trở lên, 39 bạn được 2 điểm 10 trở lên, 14 bạn được từ 3 điểm 10 trở lên, 5 bạn được 4 điểm 10, không có ai được trên 4 điểm 10. Tính xem trong đợt thi đua lớp 6A được bao nhiêu điểm 10
Câu 5 (2đ)
 Cho 25 điểm trong đó không có 3 điểm thẳng hàng. Cứ qua 2 điểm ta vẽ một đường thẳng. Hỏi có tất cả bao nhiêu đường thẳng?
Nếu thay 25 điểm bằng n điểm thì số đường thẳng là bao nhiêu.
Đáp án đề số 4
Bài 1
a. S = 
b. Ta có nếu thì 
. Vậy A < B 
Bài 2
a. C = 2 + 22 + 23 + .. + 299 + 2100
= 2(1 +2 + 22+ 23+ 24) + 26(1 + 2 + 22+ 23+ 24)+ + (1 + 2 + 22+ 23+ 24).296
 = 2 . 31 + 26 . 31 + + 296 . 31 = 31(2 + 26 + +296). Vậy C chia hết cho 31
b. C = 2 + 22 + 23 + .. + 299 + 2100 à 2C = 22 + 23 + 24 + + 2100 + 2101
Ta có 2C – C = 2101 – 2 à 2101 = 22x-1 à2x – 1 = 101 à 2x = 102 à x = 51
Bài 3: 
Gọi số cần tìm là A: 
A = 4q1 + 3 = 17q2 + 9 = 19q3 + 13 (q1, q2, q3 thuộc N)
à A + 25 = 4(q1 +7) = 17(q2 +2) = 19(q3 + 2)
à A + 25 chia hết cho 4; 17; 19 à A + 25 =1292k
à A = 1292k – 25 = 1292(k + 1) + 1267
khi chia A cho 1292 dư 1267
Bài 4
Tổng số điểm của 10 lớp 6A là
(42 - 39) . 1 + (39 - 14) . 2 + (14 - 5) . 3 + 5 . 4 = 100(điểm 10)
Bài 5: Có đường thẳng. Với n điểm có đường thẳng 
Đề số 5
Thời gian làm bài: 120 phút
Bài 1. Tính các giá trị của biểu thức.
	a. A = 1 + 2 + 3 + 4 + .........+ 100
	b. B = -1
	c. C = 
Bài 2. So sánh các biểu thức:
	a. 3200 và 2300 
	b. A = với B = .	
Bài 3. Cho 1số có 4 chữ số: . Điền các chữ số thích hợp vào dấu (*) để được số có 4 chữ số khác nhau chia hết cho tất cả 4số : 2; 3 ; 5 ; 9.
Bài 4. Tìm số tự nhiên n sao cho : 1! +2! +3! +...+n! là số chính phương?
Bài 5. Hai xe ôtô khởi hành từ hai địa điểm A,B đi ngược chiều nhau. Xe thứ nhất khởi hành từ A lúc 7 giờ. Xe thứ hai khởi hành từ B lúc 7 giờ 10 phút. Biết rằng để đi cả quãng đường AB . Xe thứ nhất cần 2 giờ , xe thứ hai cần 3 giờ. Hỏi sau khi đi 2 xe gặp nhau lúc mấy giờ?
Bài 6. Cho góc xOy có số đo bằng 1200 . Điểm A nằm trong góc xOy sao cho: . Điểm B nằm ngoài góc xOy mà :. Hỏi 3 điểm A,O,B có thẳng hàng không? Vì sao?
Câu 1 : Tính giá trị biểu thức :
Tổng : S =1 +2 +3 +...+100 có 100 số hạng .
S = ( 1+ 100) + (2 +99) + (3 + 98) + ... + 950 + 51) có 50 cặp.
 = 50 . 10 = 5050
A = 
Ta có : A = - = -
c) B = + + + +............+ 
Ta có : B = 1 - + -+ -+........+ - = 1 - = 
2) Câu 2. So sánh .
Ta có : 3200 =(32)100 = 9100 ; 2300 =(23)100 = 8100 
Vì 9100 > 8100 Nên 3200 > 2300 
A = 
 Vậy A = hay A =B = 
3) Bài 3. Để số có 4 chử số , 4chữ số khác nhau mà 4 chữ số chia hết cho cả 4 số 2; 5; 3; 9. Ta cần thoả mản : Số đó đảm bảo chia hết cho 2 nên số đó là số chẳn.
Số đó chia hết cho 5 nên số đó phải có chữ số tận cùng là số 0 hoặc 5.Số đó vừa chia hết cho 3 và 9.Nên số đó phải có tổng các chữ số chia hết cho 9.
Vậy : Chữ số tận cùng của số đó là 0 . Chữ số đầu là số 1
Do đó số đã cho là 1260
Bài 4. Tìm số tự nhiên n. Mà 1! +2!+3! +...+n! là bình phương của một số tự nhiên. 
Xét : n = 1 1! = 12
 n = 2 1! +2! = 3
 n=3 1! + 2! + 3! = 9 =32
 n = 4 1!+ 2! +3! + 4! =33
Với n >4 thì n! = 1.2.3.........n là mội số chẳn. Nên 1!+2!+......+n! =33 cộng với một số chẳn bằng số có chữ số tận cùng của tổng đó là chữ số 3. Nên nó không phải là số chính phương.
 Vậy chỉ có hai giá trị n=1 hoặc n=3 thì 1! +2! + 3! +4! +.......+n!là số chính phương.
Bài 5 Giải
1 giờ xe thứ nhất đi đươc quảng đường AB.
1 giờ xe thứ 2 đi được quảng đường AB .
1 giờ cả 2 xe đi được += quảng đương AB. 
 Sau 10 phút = giờ : Xe thứ nhất đi được . = quảng đường AB.
Quảng đường còn lại là: 
1 - (của AB)
Thời gian hai xe cùng đi quảng đường còn lại là:
:= giờ = 1 giờ 6 phút.
Hai xe gặp nhau lúc 7 giờ 10 phút + 1 giờ 6 phút = 8 giờ 16 phút .
Đáp án : 8 giờ 16 phút. (0,25đ)
Bài 6. Hình học. (tự vẽ hình) (2đ)
Vì : = 1200 , = 750, điểm A nằm trong góc xOy nên tia OA nằm giữa hai tia Ox và Oy. 
 Ta có : 
 Điểm B có thể ở hai vị trí : B và B’. (0,75đ) 
+, Tại B thì tia OB nằm ngoài hai tia Ox, OA nên . Do đó . Nên 3 điểm A,O,B thẳng hàng. (0,75đ) 
+, Còn tại B’ thì : = 1350 < 1800, . Nên 3 điểm A,O, B’ không thẳng hàng. (0,5đ) 
Đề số 6
Thời gian làm bài: 120’
Bài 1:(1,5đ) 
 Tìm x
	a) 5x = 125; 	b) 32x = 81 ; 	c) 52x-3 – 2.52 = 52.3
Bài 2: (1,5đ) 
 Cho a là số nguyên. Chứng minh rằng: 
Bài 3: (1,5đ) 
Cho a là một số nguyên. Chứng minh rằng:
a. Nếu a dương thì số liền sau a cũng dương.
b. Nếu a âm thì số liền trước a cũng âm.
c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?
Bài 4: (2đ) 
 Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương.
Bài 5: (2đ)
 Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10.
Bài 6: (1,5đ)
 Cho tia Ox. Trên hai nữa mặt phẳng đối nhău có bờ là Ox. Vẽ hai tia Oy và Oz sao cho góc xOy và xOz bắng 1200. Chứng minh rằng:
a. 
b. Tia đối của mỗi tia Ox, Oy, Oz là phân giác của góc hợp bởi hai tia còn lại. 
Đáp án đề số 3
Bài 1 (1,5đ) 
a) 5x = 125 5x = 53 => x = 3
b) 32x = 81 => 32x = 34 => 2x = 4 => x = 2
c) 52x-3 – 2.52 = 52.3
52x: 53 = 52.3 + 2.52	
52x: 53 = 52.5
52x = 52.5.53
 52x = 56 => 2x = 6 => x=3
Bài 2. Vì là một số tự nhiên với mọi a Z nên từ < 5 ta 
=> = {0,1,2,3,4}.
Nghĩa là a ={0,1,-1,2,-2,3,-3,4,-4}. Biểu diễn trên trục số cácc số này đều lớn hơn -5 và nhỏ hơn 5 do đó -5<a<5.
Bài 3.
a) Nếu a dương thì số liền sau cũng dương.
Ta có: Nếu a dương thì a>0 số liền sau a lớn hơn a nên cũng lớn hơn 0 nên là số dương
b) Nếu a âm thì số liền trước a cũng âm.
Ta có: Nếu a âm thì a<0 số liền trước a nhỏ hơn a nên cũng nhỏ hơn 0 nên là số âm.
Bài 4 (2đ). Trong các số đã cho ít nhất có 1 số dương vì nếu trái lại tất cả đều là số âm thì tổng của 5 số bất kỳ trong chúng sẽ là số âm trái với giả thiết.
Tách riêng số dương đó còn 30 số chia làm 6 nhóm. Theo đề bài tổng các số của mỗi nhóm đều là số dương nên tổng của 6 nhóm đều là số dương và do đó tổng của 31 số đã cho đều là số dương.
Bài 5 (2đ): Vì có 11 tổng mà chỉ có thể có 10 chữ số tận cùng đều là các số từ 0 , 1 ,2, ., 9 nên luôn tìm được hai tổng có chữ số tận cùng giống nhau nên hiệu của chúng là một số nguyên có tận cùng là 0 và là số chia hết cho 10.
Bài 6 (1,5đ).Ta có: và tia Ox’ nằm giữa hai tia Oy, Oz nên vậy 
Do tia Ox’ nằm giữa hai tia Oy, Oz và nên Ox’ là tia phân giác của góc hợp bởi hai tia Oy, Oz.
Tương tự tia Oy’ (tia đối của Oy) và tia Oz’ (tia đối của tia Oz) là phân giác của góc xOz và xOy.
Đề số 7
Thời gian làm bài 120 phút
Bài 1( 8 điểm )
1. Tìm chữ số tận cùng của các số sau: 
 	 a) 571999 b) 931999
2. Cho A= 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5.
3 . Cho phân số ( a<b) cùng thêm m đơn vị vào tử và mẫu thì phân số mới lớn hơn hay bé hơn ?
4. Cho số có 12 chữ số . chứng minh rằng nếu thay các dấu * bởi các chưc số khác nhau trong ba chữ số 1,2,3 một cách tuỳ ‎ thì số đó luôn chia hết cho 396.
5. chứng minh rằng:
	a) ; 	b) 
Bài 2: (2 điểm )
Trên tia Ox xác định các điểm A và B sao cho OA = a(cm), OB = b (cm) 
a) Tính độ dài đoạn thẳng AB, biết b< a 
b) Xác định điểm M trên tia Ox sao cho OM = (a+b).
Đề số 8
Thời gian làm bài: 120 phút
Câu 1: (2đ)
Thay (*) bằng các số thích hợp để
a) ; chia hết cho 3. b) chia hết cho 2 và chia 3 dư 1
Câu 2: (1,5đ) Tính tổng S = 1.2 + 2.3 + 3.4 + ... + 99.100
Câu 3: (3,5 đ) Trên con đường đi qua 3 địa điểm A; B; C (B nằm giữa A và C) có hai người đi xe máy Hùng và Dũng. Hùng xuất phát từ A, Dũng xuất phát từ B. Họ cùng khởi hành lúc 8 giờ để cùng đến C vào lúc 11 giờ cùng ngày. Ninh đi xe đạp từ C về phía A, gặp Dũng luc 9 giờ và gặp Hùng lúc 9 giờ 24 phút. Biết quãng đường AB dài 30 km, vận tốc của ninh bằng 1/4 vận tốc của Hùng. Tính quãng đường BC
Câu 4: (2đ) Trên đoạn thẳng AB lấy 2006 điểm khác nhau đặt tên theo thứ từ từ A đến B là A1; A2; A3; ...; A2004. Từ điểm M không nằm trên đoạn thẳng AB ta nối M với các điểm A; A1; A2; A3; ...; A2004 ; B. Tính số tam giác tạo thành
Câu 5: 
(1đ)Tích của hai phân số là . Thêm 4 đơn vị vào phân số thứ nhất thì tích mới là . Tìm hai phân số đó.
Đáp án đề số 8
Câu 1
a) Để ; chia hết cho 3 thì:
	5 + 1 + 0 + * chia hết cho 3; từ đó tìm được * {0; 3; 6; 9} (1đ)
b) Để chia hết cho 2 và chia 3 dư 1 thì:
 * chẵn và 2 + 6 + 1 + * chia 3 dư 1; từ đó tìm được * = 4	 (1đ)
Câu 2
 S = 1.2 + 2.3 + 3.4 + ... + 99.100
3.S = (1.2 + 2.3 + 3.4 + ... + 99.100).3	 (0,5đ)
 = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3	
 = 1.2.3 +2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)	 (0,5đ)
 = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - ... - 98.99.100 + 99.100.101
 S = 99.100.101: 3 = 33. 100 . 101 = 333300	 (0,5đ)
Câu 3
	Thời gian đi từ A đến C của Hùng là: 11 - 8 = 3 (giờ)
	Thời gian đi từ B đến C của Dũng là:	11 - 8 = 3 (giờ)
	Quãng đường AB là 30 km do đó cứ 1 giờ khoảng cách của Hùng và Dũng bớt đi 10 km. Vì vậy lúc 9 giờ Hùng còn cách Dũng là 20 km, lúc đó Ninh gặp Dũng nên Ninh cũng cách Hùng 20 km.
	Đến 9 giờ 24 phút, Ninh gặp Hùng do đó tổng vận tốc của Ninh và Hùng là:
	20 : 
	Do vận tốc của Ninh bằng 1/4 vận tốc của Hùng nên vận tốc của Hùng là:
	[50 : (1 + 4)] . 4 = 40 (km/h)
	Từ đó suy ra quãng đường BC là:
	40 . 3 - 30 = 90 (km)
	Đáp số: BC = 90 km
Câu 4: (2đ)
	Trên đoạn thẳng AB có các điểm A; A1; A2; A3; ...; A2004 ; B do đó, tổng số điểm trên AB là 2006 điểm suy ra có 2006 đoạn thẳng nối từ M đến các điểm đó.
	Mỗi đoạn thẳng (ví dụ MA) có thể kết hợp với 2005 đoạn thẳng còn lại và các đoạn thẳng tương ứng trên AB để tạo thành 2005 tam giác. 
Do đó 2006 đoạn thẳng sẽ tạo thành 2005 . 2006 = 4022030 tam giác (nhưng lưu ý là MA kết hợp với MA1 để được 1 tam giác thì MA1 cũng kết hợp với MA được 1 tam giác và hai tam giác này chỉ là 1)
Do đó số tam giác thực có là: 4022030 : 2 = 2011015
Câu 5: (1đ)
Tích của hai phân số là . Thêm 4 đơn vị vào phân số thứ nhất thì tích mới là suy ra tích mới hơn tích cũ là - = đây chính là 4 lần phân số thứ hai. Suy ra phân số thứ hai là : 4 = = .
Từ đó suy ra phân số thứ nhất là: : = 
Đề số 9
Thời gian làm bài 120 phút
Câu 1: (2 điểm) Cho biểu thức 
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
Câu 2: (1 điểm) 
 Tìm tất cả các số tự nhiên có 3 chữ số sao cho và 
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
Câu 4: (2 điểm) 
a. Cho a, b, n Î N* Hãy so sánh và 
b. Cho A = ; B = . So sánh A và B.
Câu 5: (2 điểm)
 Cho 10 số tự nhiên bất kỳ : a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm) 
 Cho 2006 đường thẳng trong đó bất kì 2 đườngthẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
Đáp án đề số 9
Câu 1: 
Ta có: = 
Điều kiện đúng a ≠ -1 ( 0,25 điểm).
Rút gọn đúng cho 0,75 điểm.
b.Gọi d là ước chung lớn nhất của a2 + a – 1 và a2+a +1 (0,25đ).
Vì a2 + a – 1 = a(a+1) – 1 là số lẻ nên d là số lẻ
Mặt khác, 2 = [ a2+a +1 – (a2 + a – 1) ] d
Nên d = 1 tức là a2 + a + 1 và a2 + a – 1 nguyên tố cùng nhau. (0,5đ)
Vậy biểu thức A là phân số tối giản. ( 0,25 điểm)
Câu 2: 
= 100a + 10 b + c = n2 - 1	(1)
= 100c + 10 b + c = n2 – 4n + 4	(2) (0,25đ)
Từ (1) và (2) 99(a – c) = 4 n – 5 4n – 5 99 (3) (0,25đ)
Mặt khác: 100 n2-1 999 101 n21000 11n31 394n – 5 119 (4) ( 0,25đ)
 Từ (3) và (4) 4n – 5 = 99 n = 26
Vậy: = 675 ( 0,25đ)
Câu 3: (2 điểm)
a) Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( aÎ Z) a2 – n2 = 2006 (a-n) (a+n) = 2006 (*) (0,25 điểm).
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*) ( 0,25 điểm).
+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thỏa mãn (*) (0,25 điểm).
Vậy không tồn tại n để n2 + 2006 là số chính phương. (0,25 điểm).
b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1 + 2006 = 3m+2007= 3( m+669) chia hết cho 3.
Vậy n2 + 2006 là hợp số. ( 1 điểm).
Bài 4: Mỗi câu đúng cho 1 điểm 
Ta xét 3 trường hợp 	 ; ; 	 (0,5đ).
TH 1: a = b thì . (0,5đ).
TH 2: a > b a + n > b+ n. 
Mà có phần thừa so với 1 là có phần thừa so với 1 là , 
vì nên (0,25đ).
TH3: a < b a + n < b + n.
Khi đó có phần bù tới 1 là , có phần bù tới 1 là , 
vì 

Tài liệu đính kèm:

  • docbo_de_thi_hoc_sinh_gioi_mon_toan_lop_6_phan_1.doc