Đề thi học sinh giỏi Toán Lớp 6 - Năm học 2019-2020 (Có đáp án)

Đề thi học sinh giỏi Toán Lớp 6 - Năm học 2019-2020 (Có đáp án)

Câu 5. (6 điểm) Trên tia vẽ hai điểm và sao cho

a) Trong 3 điểm điểm nào nằm giữa hai điểm còn lại ? Vì sao ?

b) Tính độ dài đoạn thẳng

c) Điểm A có phải là trung điểm của đoạn thẳng không ? Vì sao ?

d) Trên tia đối của tia BA lấy điểm sao cho . Chứng tỏ rằng B là trung điểm của đoạn thẳng OD

 

docx 3 trang huongdt93 07/06/2022 2110
Bạn đang xem tài liệu "Đề thi học sinh giỏi Toán Lớp 6 - Năm học 2019-2020 (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ THI HỌC SINH GIỎI TOÁN 6
NĂM HỌC 2019-2020
Câu 1. (4 điểm)
Tính giá trị các biểu thức sau: 
Tính giá trị biểu thức tại và 
Câu 2. (4 điểm)
Cho và Chứng minh 
Tìm các số tự nhiên biết: 
Khi chia số tự nhiên cho các số thì được số dư lần lượt là 
Tìm số biết 
Câu 3. (4 điểm)
Tìm tất cả các cặp số tự nhiên sao cho chia hết cho 36
Cho 
Chứng minh 
Tìm thỏa mãn đẳng thức trên 
Câu 4. (2 điểm)
Tìm nguyên để 
Tìm Ư CLN 
Câu 5. (6 điểm) Trên tia vẽ hai điểm và sao cho 
Trong 3 điểm điểm nào nằm giữa hai điểm còn lại ? Vì sao ?
Tính độ dài đoạn thẳng 
Điểm A có phải là trung điểm của đoạn thẳng không ? Vì sao ?
Trên tia đối của tia BA lấy điểm sao cho . Chứng tỏ rằng B là trung điểm của đoạn thẳng OD
ĐÁP ÁN
Câu 1.
tại 	tại 
Câu 2.
Từ 
Mà 
Vì ta có:
Vì là các số tự nhiên nên các cặp 
Vì khi chia cho có số dư lần lượt là 
Câu 3.
Ta có và 
Vậy để chia hết cho 36 thì chia hết cho 4 và 9
chia hết cho 9 khi 
chia hết cho 4 khi 
Với thay vào (1)
Với thay vào (1) 
Vậy các cặp cần tìm là 
Vì 
Vì 
Câu 4.
Ta có: 
Gọi là UCLN của và 
Câu 5.
Ta có Vì nên A nằm giữa O và B
Vì A nằm giữa và B nên 
Vì và nên A là trung điểm của OB
Ta có : 
Vì O và D nằm trên hai tia đối nhau gốc B nên B nằm giữa O và D
Từ (1) và (2) suy ra là trung điểm của 

Tài liệu đính kèm:

  • docxde_thi_hoc_sinh_gioi_toan_lop_6_nam_hoc_2019_2020_co_dap_an.docx