Đề thi học sinh giỏi môn Toán Lớp 6 - Năm học 2019-2020 - Trường THCS Hoằng Phụ (Có đáp án)
Bài 4. (4,0 điểm)
a) Tìm số tự nhiên có hai chữ số khác nhau. Biết rằng: hai chữ số của số đó đều là số nguyên tố. Tích của số đó với các chữ số của nó là số có 3 chữ số giống nhau tạo thành từ chữ số hàng đơn vị của nó.
b) Cho p là số nguyên tố và cũng là số nguyên tố. Hỏi là số nguyên tố hay hợp số ? Vì sao ?
Bài 5. (5,0 điểm) Cho đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau, không có ba đường thẳng nào cùng đi qua một điểm
a) Biết rằng số giao điểm của các đường thẳng đó là Tính n
b) Số giao điểm của các đường thẳng đó có thể là 2017 được không ? Vì sao ?
Bạn đang xem tài liệu "Đề thi học sinh giỏi môn Toán Lớp 6 - Năm học 2019-2020 - Trường THCS Hoằng Phụ (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
TRƯỜNG THCS HOẰNG PHỤ ĐỀ CHÍNH THỨC ĐỀ THI CHỌN HỌC SINH GIỎI NĂM HỌC 2019-2020 Môn: Toán 6 Bài 1. (1,0 điểm) Cho tổng Tính giá trị biểu thức Bài 2. (4,0 điểm) Cho Tìm chữ số tận cùng của Chứng tỏ rằng chia hết cho Tìm số tự nhiên nhỏ nhất sao cho: chia cho 2 dư 1, chia cho 3 dư 2, a chia cho 5 dư 4, chia cho 7 dư 3 Tìm số nguyên biết Bài 3. (3,0 điểm) Tìm số tự nhiên biết: Bài 4. (4,0 điểm) Tìm số tự nhiên có hai chữ số khác nhau. Biết rằng: hai chữ số của số đó đều là số nguyên tố. Tích của số đó với các chữ số của nó là số có 3 chữ số giống nhau tạo thành từ chữ số hàng đơn vị của nó. Cho p là số nguyên tố và cũng là số nguyên tố. Hỏi là số nguyên tố hay hợp số ? Vì sao ? Bài 5. (5,0 điểm) Cho đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau, không có ba đường thẳng nào cùng đi qua một điểm Biết rằng số giao điểm của các đường thẳng đó là Tính n Số giao điểm của các đường thẳng đó có thể là 2017 được không ? Vì sao ? Bài 6. (3 điểm) a) So sánh và b) Tìm số nguyên tố Biết là số chính phương c) Cho là số tự nhiên có ba chữ số Tìm giá trị lớn nhất của ĐÁP ÁN Bài 1. Tính được: Bài 2. a) Tìm được chữ số tận cùng của tích là 0 Tìm được chữ số tận cùng của tích là 0 Nên chữ số tận cùng của A là 0 b) Nhận xét , tìm được quy luật của các thừa số trong tích B là các số tự nhiên chia 3 dư 1, nên B chứa thừa số 13. Do đó Suy ra B chia hết cho 377 Tìm được quy luật của các thừa số trong tích C là các số tự nhiên chia 9 dư 3, nên C chứa thừa số 39, Do đó: Suy ra chia hết cho 377 Vậy A chia hết cho 377. Vì chia cho 2 dư 1, chia cho 3 dư 1, a chia cho 5 dư 4, a chia cho 7 dư 3 Nên Mà là số tự nhiên nhỏ nhất Vậy số tự nhiên cần tìm là Ta có: Vì nên Do đó từ (1) Vậy Bài 3. Lý luận tính tổng : Khi đó Bài 4. Gọi số cần tìm là Theo đề bài ta có Mà b) Vì p là số nguyên tố lớn hơn 3 nên p có dạng hoặc Nếu thì , lý luận 2p+1 là hợp số, trái với đề bài Do đó khi đó là hợp số Bài 5. Với n đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau, không có ba đường thẳng nào đồng quy. Số giao điểm được xác định như sau: Chọn 1 đường thẳng, đường thẳng này cắt đường thẳng còn lại tạo ra giao điểm, làm như vậy với đường thẳng ta được giao điểm. Nhưng mỗi giao điểm đã được tính 2 lần, nên số giao điểm là giao điểm Khi số giao điểm là 1128 ta có: Giả sử số giao điểm bằng 2017 , áp dụng kết quả câu a ta có : Lý luận ra điều vô lý, nên số giao điểm không thể bằng 2017 Bài 6. Ta có: Vì Hay Ta có: Do là các chữ số, là số nguyên tố nên là số chính phương khi Với mà là số nguyên tố ta được số Với mà là số nguyên tố ta được số Vậy Nếu thì Nếu hoặc c khác 0 thì Giá trị lớn nhất của A là khi
Tài liệu đính kèm:
- de_thi_hoc_sinh_gioi_mon_toan_lop_6_nam_hoc_2019_2020_truong.docx